纳米药物对肿瘤免疫微环境的影响

高春晓, 魏训东, 黄卫, 袁伟, 马洁

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (19) : 1546-1550.

PDF(1034 KB)
PDF(1034 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (19) : 1546-1550. DOI: 10.11669/cpj.2021.19.002
综述

纳米药物对肿瘤免疫微环境的影响

  • 高春晓1, 魏训东1, 黄卫2, 袁伟3, 马洁1*
作者信息 +

Effect of Nano-drugs on Tumor Immune Microenvironment

  • GAO Chun-xiao1, WEI Xun-dong1, HUANG Wei2, YUAN Wei3, MA Jie1*
Author information +
文章历史 +

摘要

近几年来,受益于肿瘤免疫研究的进步,癌症治疗手段及诊断技术有了突飞猛进地发展。将纳米药物与肿瘤免疫治疗相结合,在抗肿瘤治疗方面孕育着巨大的机遇。但是,纳米药物的临床应用也面临着生物安全性的考验,与机体免疫的协同作用机制还有待阐明。笔者总结了纳米药物与肿瘤免疫微环境的作用特点和机制,着重介绍纳米药物如何激活并长期刺激固有免疫和适应性免疫,进而调节肿瘤免疫微环境的功能,并对目前存在的问题和未来发展趋势进行讨论和展望,期待有助于纳米药物用于临床肿瘤治疗的转化应用。

Abstract

In recent years, benefiting from advances in tumor immunity research, cancer treatment and diagnostic techniques have advanced by leaps and bounds. The combination of nano-medicine and tumor immunotherapy gestate huge opportunities in anti-tumor therapy. However, the clinical application of nano-medicine is also facing the challenge of biological safety, and the mechanism of synergy between nano-medicine and body immunity has yet to be elucidated. This article summarizes the characteristics and mechanism of nanomedicine's effect on tumor immune microenvironment, focusing on how nano-medicine can activate and stimulate innate immunity and adaptive immunity and then regulate the function of tumor immune microenvironment.

关键词

纳米药物 / 肿瘤治疗 / 免疫微环境 / 免疫治疗

Key words

nano-medicine / tumor therapy / immune microenvironment / immune therapy

引用本文

导出引用
高春晓, 魏训东, 黄卫, 袁伟, 马洁. 纳米药物对肿瘤免疫微环境的影响[J]. 中国药学杂志, 2021, 56(19): 1546-1550 https://doi.org/10.11669/cpj.2021.19.002
GAO Chun-xiao, WEI Xun-dong, HUANG Wei, YUAN Wei, MA Jie. Effect of Nano-drugs on Tumor Immune Microenvironment[J]. Chinese Pharmaceutical Journal, 2021, 56(19): 1546-1550 https://doi.org/10.11669/cpj.2021.19.002
中图分类号: R944   

参考文献

[1] THOMAS P D, KAHN M. Kat3 coactivators in somatic stem cells and cancer stem cells: biological roles, evolution, and pharmacologic manipulation[J]. Cell Biol Toxicol, 2016, 32(1):61-81.
[2] WHERRY E J. T cell exhaustion[J]. Nat Immunol, 2011, 12(6):492-499.
[3] FRIDMAN W H, PAGÈS, FRANCK, SAUTÈS-FRIDMAN, CATHERINE, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4):298-306.
[4] JOHN, REISER, ARNOB, et al. Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor Immune Response [J]. J Immunol Res, 2016,2016:8941260. doi: 10.1155/2016/8941260.
[5] FEUERER M, ROCHA M, BAI L, et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients[J]. Int J Cancer, 2001, 92(1):96-105.
[6] FRANCK PAGèS, BERGER A, CAMUS M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer[J]. New England J Med, 2006, 353(25):2654-2666.
[7] GANESAN A P, CLARKE J, WOOD O, et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer[J]. Nat Immunol, 2017,18(8): 940-950.
[8] WEBB J R, MILNE K, NELSON B H. PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer[J]. Cancer Immunol Res, 2015, 3(8):926-935.
[9] QIAN B Z, LI J F, ZHANG H, et al. CCL2 recruits inflammatory monocytes to facilitate breast tumor metastasis[J]. Nature, 2012, 475(7355):222-225.
[10] HELENA, JANOLS, CAROLINE, et al. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases[J]. J Leukoc Biol, 2014, 96(5): 685-693.
[11] YU J, DU W, YAN F, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer [J]. J Immunol, 2013, 190(7): 3783-3797.
[12] NISHIKAWA H, SAKAGUCHI S. Regulatory T cells in cancer immunotherapy[J]. Curr Opin Immunol, 2014, 55(10): 2183-2189.
[13] LI W, YANG J, LUO L, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death[J]. Nat Commun, 2019, 10(1):3349.
[14] WU C, GUAN X, XU J, et al. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics[J]. Biomaterials, 2019, 205:106-119.
[15] BARILLET S, FATTAL E, MURA S, et al. Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation[J]. Nanotoxicology, 2019, 13(5):606-622.
[16] STEENBLOCK E R, FAHMY T M. A comprehensive platform for Ex Vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells[J]. Mol Ther, 2008, 16(4):765-772.
[17] FREEMAN G J, SHARPE A H, KEIR M E, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26(1):677-704.
[18] TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. New England J Med, 2012, 366(26):2443-2454.
[19] UYTTENHOVE C, PILOTTE L, THéATE, IVAN, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase[J]. Nat Med, 2003, 9(10):1269-1274.
[20] PRASMICKAITE L, TENSTAD E M, PETTERSEN S, et al. Basal-like breast cancer engages tumor-supportive macrophages via secreted factors induced by extracellular S100A4[J]. Mol Oncol, 2018, 12(9): 1540-1558.
[21] DE GROOT A E, PIENTA K J. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages[J]. Oncotarget, 2018, 9(29): 20908-20927.
[22] GUERRIERO, JENNIFER L. Macrophages: the road less traveled, changing anticancer therapy[J]. Trends Mol Med, 2018, 24(5): 472-489.
[23] TAN Y S, SANSANAPHONGPRICHA K, XIE Y, et al. Mitigating SOX2-potentiated immune escape of Head and Neck Squamous Cell Carcinoma with a STING-inducing nanosatellite vaccine[J]. Clin Cancer Res, 2018, 24(17): 4242-4255.
[24] WANG J C, SUN X, MA Q, et al. Metformin's antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization[J]. J Cell Mol Med, 2018, 22(8): 3825-3836.
[25] TZENG H T, SU C C, CHANG C P, et al. Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages towards tumor-suppressing phenotype[J]. Int J Cancer, 2018, 143(7): 1753-1763.
[26] MANTOVANI A, ALLAVENA P. The interaction of anticancer therapies with tumor-associated macrophages[J]. J Exp Med, 2015, 212(4):435-445.
[27] RONALD S WEINSTEIN, SHRIRAM M JAKATE, JOSE M DOMINGUEZ, et al. Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis[J]. Cancer Res, 1991, 51(10):2720-2726.
[28] HABER M, HENDERSON M J, NORRIS M D, et al. ABC transporters in cancer: more than just drug efflux pumps[J]. Nat Rev Cancer, 2010, 10(2):147-156.
[29] WANG L, LI W, LU J, et al. Supramolecular nano-aggregates based on bis(pyrene) derivatives for lysosome-targeted cell imaging[J]. J Phy Chem C, 2013, 117(50):26811-26820.
[30] ZITZMANN S, EHEMANN V, SCHWAB M. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo[J]. Cancer Res, 2002, 62(18):5139-5143.
[31] KALAFATOVIC D, NOBIS M, SON J, et al. MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth[J]. Biomaterials, 2016, 98:192-202.
[32] TSOI K M, MACPARLAND S A, MA X Z, et al. Mechanism of hard-nanomaterial clearance by the liver[J]. Nat Mater, 2016, 15(11):1212-1221.
[33] WONG Y Q W, YEO C H F, ANG W H, Induction of immunogenic cell death by chemotherapeutic platinum complexes[J]. Angew Chem Int Ed Engl, 2015, 127(22):6583-6587.
[34] NELLY PANTé, KANN M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm[J]. Mol Biol Cell, 2002, 13(2):425-434.
[35] TANG X, MO C, WANG Y, et al. Anti-tumour strategies aiming to target tumour-associated macrophages[J]. Immunology, 2013, 138(2):93-104.
[36] JOÃO, CONDE, CHENCHEN, et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells[J]. Adv Funct Mater, 2015, 25(27): 4183-4194.
[37] SYLVESTRE M, CRANE C A, PUN S H. Progress on modulating tumor-associated macrophages with biomaterials[J]. Adv Mater, 2020, 32(13): e1902007. doi: 10.1002/adma.201902007.
[38] LEDO A M, SASSO M S, BRONTE V, et al. Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells[J]. J Controlled Release, 2019, 295:60-73.
[39] BURKERT S C, SHURIN G V, WHITE D L, et al. Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups[J]. Nanoscale, 2018, 10(37): 17990-18000.
[40] LÓPEZ-SOTO, ALEJANDRO, GONZALEZ S, SMYTH M J, et al. Control of metastasis by NK Cells[J]. Cancer Cell, 2017, 32(2):135-154.
[41] HANS K, LAURENT B, FRANCES T. Natural killer cells for immunotherapy-advantages of the NK-92 cell line over blood NK cells[J]. Front Immunol, 2016, 7(91): 1-7.
[42] CHAN A C, CARTER P J. Therapeutic antibodies for autoimmunity and inflammation[J]. Nat Rev Immunol, 2010, 10(5):301-316.
[43] VIVIER E, TOMASELLO, BARATIN M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5):503-510.
[44] ZHANG C, GUAN Y, SUN Y, et al. Tumor heterogeneity and circulating tumor cells[J]. Cancer Lett, 2016, 374(2):216-223.
[45] JI T, LANG J, NING B, et al. Enhanced natural killer cell immunotherapy by rationally assembling Fc fragments of antibodies onto tumor membranes[J]. Adv Mater, 2019, 31(6): e1804395. doi: 10.1002/adma.201804395.
[46] QIN D, STEFAN W, DING D, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors[J]. ACS Nano, 2018, 12(8): 8423-8435.
[47] SANMAMED M F, CHESTER C, MELERO I, et al. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies[J]. Ann Oncol, 2016, 27(7): 1190-1198.

基金

国家重点研发计划项目资助(2016YFA02015003);中国医学科学院医学与健康科技创新工程项目资助(2018-I2M-1-002);北京协和医学院学科建设项目资助(201920202103)
PDF(1034 KB)

Accesses

Citation

Detail

段落导航
相关文章

/